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The charge-flipping algorithm in its band-flipping variant is capable of ab initio

reconstructions of scattering densities with positive and negative values. It is

shown that the method can be applied to reconstructions of difference electron

densities of superstructures, i.e. densities obtained as a difference between the

true scattering density and the average density over two or more subcells of

the true structure. The amplitudes of reflections lying on the reciprocal lattice of

the subcell are not required for the procedure. A series of examples shows

applications of the method to the solution of superstructures in periodic crystals

or quasicrystals as well as the application to ab initio solution of modulation of

an incommensurately modulated structure from satellite reflections only and

solution of a structure from a crystal twinned by reticular pseudomerohedry. The

method is especially suited for solving pseudosymmetry problems occurring

frequently in superstructures.

1. Introduction

Structure solution from X-ray or neutron diffraction data can

be considered a mature field in many respects. Standard

structure solution methods are powerful and can routinely

solve structures with up to several hundred or even a few

thousand independent atoms. However, special cases can still

pose problems. One of the frequently occurring phenomena

that complicate structure solution is pseudotranslation effects,

or so-called superstructures. Superstructures can be described

to a good approximation by a smaller unit cell, but the true

structure has a larger unit cell (called supercell) with a volume

that is an integer multiple of the small unit cell. The electron

density in the individual subcells deviates only slightly from an

average density obtained by averaging the density over the

individual subcells. In reciprocal space the superstructure is

characterized by the presence of two classes of reflections:

strong main reflections containing information about the

average density, and relatively weak superstructure reflections

containing the information about the difference between the

true and the average density. Probably the first systematic

treatment of the problem was proposed by Buerger (1954)

using the properties of a partial Patterson function. A detailed

account of this method was presented by Takéuchi (1972).

The problem with superstructures lies in the often very

small differences between the subcells, and the correspond-

ingly weak intensities of the superstructure reflections. As a

result, the assumptions underlying the statistical approaches

of direct methods, namely the essentially random distribution

of the atoms in the unit cell, are no longer fulfilled. The

problem has been treated by different scaling of the main and

superstructure reflections (Hauptman & Karle, 1959; Böhme,

1982; Beurskens et al., 1990), but even with these approaches

the problem remains difficult, and the difficulty increases with

the multiplicity of the superstructure.

Rius et al. (1996) proposed an alternative method of solving

superstructures by reconstructing directly the difference

between the true density and the average density. Because the

difference density contains both positive and negative peaks,

the commonly used similarity between � and �2 cannot be

used. Rius et al. (1996) used instead the similarity between �
and �3, which preserves the sign of �. The resulting phase

relationships thus contain only quartet and quintet invariants.

This property makes the method computationally rather

involved and applicable only to simple cases. Recently, Rius &

Frontera (2008) proposed an improved approach based on the

previously published S-FFT direct methods algorithm (Rius et

al., 2007).

Here we propose an alternative method to reconstruct

directly the difference density using only the superstructure

reflections. The method is based on the charge-flipping algo-

rithm (Oszlányi & Süto��, 2004, 2005, 2008) in its band-flipping

variant (Oszlányi & Süto��, 2007), which allows ab initio

reconstructions of scattering densities with both positive and

negative regions. In the original paper, the method was

proposed for the reconstruction of neutron scattering densities



in the presence of atoms with negative scattering lengths. We

show that the method can also be successfully applied to the

solution of superstructures. In a series of case studies it is

shown that the method is useful in the case of classical

superstructures, but also in the structure solution of modu-

lated structures, superstructures in quasicrystals and certain

types of twins.

The formalism behind the reconstruction of difference

densities and the method are described in x2. In the same

section an overview of possible applications is presented. x3

contains a description of applications of the method to

experimental data. The purpose of this section is not to work

out a detailed structure analysis, but to demonstrate the ability

of the presented method to obtain structural information in

various cases. General observations, properties and limits of

the method are then discussed in x4.

2. Theoretical

2.1. Average and difference density

Let � be the scattering density in the unit cell of a crystal

structure. The unit cell is defined by three basis vectors a; b; c.

� can be calculated by Fourier transform of complex structure

factors Fh. Let us define a subcell of the unit cell defined by

three vectors asub; bsub; csub such that

ða; b; cÞ ¼ ðasub; bsub; csubÞS: ð1Þ

S is a matrix with integer elements, and its determinant gives

the number Ns of subcells per one unit cell of the structure.

Let the set foi; i ¼ 1; . . . ;Nsg be the lattice nodes of the

subcells inside the unit cell. Vectors oi can be expressed in the

true unit cell by means of vectors ti with integer components as

oi ¼ S�1ti: ð2Þ

With the relationship between the subcell and the true cell

defined, we can divide � into two parts: the average density,

which is an average over the Ns subcells, and the difference

between the true and average density:

� ¼ �av þ �dif: ð3Þ

The average density is defined as

�avðrÞ ¼
1

Ns

XNs

i�1

�ðrþ oiÞ: ð4Þ

By definition, �av has the periodicity of the subcell. In the

Fourier space this means that the Fourier coefficients of �av

will lie on the nodes of the reciprocal lattice spanned by

vectors a�sub; b�sub; c�sub, which are obtained from a�; b�; c�

through the matrix S:

a�sub

b�sub

c�sub

0
@

1
A ¼ S

a�

b�

c�

0
@

1
A: ð5Þ

If h is a reciprocal-lattice vector of the true (small) reciprocal

lattice, then FavðhÞ is nonzero only if hTS�1 has integer

components, and zero otherwise. Furthermore, we can write

FðhÞ ¼
R
V

�ðrÞ exp 2�ihTr
� �

dV

¼
R

V=Ns

PNs

i¼1

�ðrþ oiÞ exp 2�ihTðrþ oiÞ
� �

dV

¼
R

V=Ns

exp 2�ihTr
� �PNs

i¼1

�ðrþ oiÞ exp 2�ihTS�1ti

� �
dV:

ð6Þ

The integration limit V represents an integration over the

whole unit cell, while V=Ns represents integration over one

subcell only. If hTS�1 is a vector with integer components, the

exponential inside the sum on the last line of equation (6)

equals 1, and, making use of equation (4), we can further write

FðhÞ ¼

Z
V=Ns

exp 2�ihTr
� �XNs

i¼1

�ðrþ oiÞ dV

¼

Z
V

exp 2�ihTr
� � 1

Ns

XNs

i¼1

�ðrþ oiÞ dV

¼

Z
V

exp 2�ihTr
� �

�avðrÞ dV

¼ FavðhÞ: ð7Þ

As � is a sum of �av and �dif , so are their Fourier spectra, and it

thus follows that the Fourier components FðhÞ are either fully

determined by �av, or by �dif :

FðhÞ ¼
FavðhÞ if hTS�1 is integer;
FdifðhÞ otherwise:

�
ð8Þ

The amplitudes of the Fourier coefficients of �av and �dif are

thus available from the diffraction experiment as two distinct

classes of reflections. If the phases of Fdif can be found ab initio

without using Fav, the difference density �dif can be recon-

structed independently of �av. A method for reconstruction of

�dif based on the charge-flipping algorithm is described in x2.2.

The reason for the need for a special method for the

reconstruction of �dif is twofold. First, �dif can contain both

positive and negative values, and thus the classical approaches

cannot be used as they rely on the positivity of the scattering

density. Second, the shape of peaks in �dif can be quite vari-

able, and, depending on the nature of �av and �dif , can deviate

substantially from spherically symmetric peaks. As a result,

the form factors of the peaks are not known, and normal-

ization of �dif becomes difficult. This problem can hamper

solution of superstructures by classical direct methods

(Beurskens & Bosman, 1982).

The ability to solve difference densities from a subset of

reflection intensities has manifold applications. The obvious

application is the solution of superstructures. In this case Fav is

on average much stronger than Fdif , and �dif describes small

variations between the density in the individual subcells, which

are, in general, very similar. The experimental uncertainties on

the much stronger Fav are often of the same order of magni-

tude as the amplitudes of Fdif, and can obscure the super-

structure features in the total density map. The direct
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reconstruction of the difference density has the advantage of

filtering out the major contribution to � from �av, and

providing direct insight into the superstructural features.

Moreover, while the total density shows a pronounced

pseudosymmetry, �dif shows the true symmetry of the struc-

ture, which is then much more easily inferred. This possibility

is illustrated in xx3.1 and 3.2. Superstructures do not occur

only in ordinary periodic structures, but also in quasicrystals

(QC). The structures of quasicrystals are described in higher-

dimensional space (five-dimensional for decagonal and six-

dimensional for icosahedral QCs). Despite the different

dimensionality, the concept of superstructure reconstruction

can also be applied to quasicrystals, as is illustrated in x3.5.

The problem of weak superstructure reflections is probably

the most obvious case where the formalism introduced above

applies. However, nowhere in the derivation of the formulas

above was the assumption made that Fav is on average much

stronger than Fdif . The method can thus also be applied to

cases other than superstructures. A particularly attractive case

is that of twinning by reticular merohedry. These twins have a

twin index larger than one, and a reciprocal lattice exists that is

a superlattice of both (or all) twin domains (see Nespolo &

Ferraris, 2004, for a recent overview). In this case the reflec-

tions on this superlattice can be considered as Fav, and the

remaining reflections as Fdif. The set of jFavj is not known from

the experiment, because reflections from several twin domains

overlap at these positions. This overlap can hamper the

structure solution. On the other hand, the reflections not lying

on the superlattice are separated, and thus the set of jFdifj is

known for individual twin domains. As a result, the structure

can be inferred by reconstructing the difference density from

jFdifj. An example of this case is documented in x3.3. A similar

case is the problem of intergrowths of several polytypes.

Several polytypes of the same compound have unit cells that

are usually closely related, and if they are present in the same

crystal, subsets of their reflections (called family reflections)

overlap. Other reflections, however, remain separated (poly-

type reflections). The individual polytypic structures can be

determined from polytype reflections only.

Another interesting case occurs if all Fav lie on a section of

the reciprocal space. This case is contained in the formalism

above, if one or two basis vectors of the subcell are allowed to

have an infinitely small length, or, more generally, if one or

two eigenvalues of the matrix S go to infinity. The section can

be a plane (one infinite eigenvalue) or a line (two infinite

eigenvalues). In such a case �av is obtained by projecting �
onto the plane or line of the section, and extending the

projected density back along the projection directions. �dif is

then the difference between the true density and the extended

projection. Applications of this concept to ordinary periodic

structures are probably rather limited, because the number of

reflections lying on the section is small compared to the total

number of reflections, and even if they are not available for

any reason, their absence would probably not prevent the

structure solution. However, the situation is different in

incommensurately modulated structures. These structures are

described in higher-dimensional space (called superspace),

and their reflections are indexed by more than three integers

(Janssen et al., 2007; van Smaalen, 2007). These structures can

be described as an average three-dimensional periodic struc-

ture perturbed by an additional modulation, which is incom-

mensurate with the periodicity of the average structure. In the

superspace description the average structure is obtained as a

projection of the total higher-dimensional structure onto the

three-dimensional space. In reciprocal space the modulated

structures are characterized by two sets of reflections. The so-

called main reflections contain information about the average

structure, and can be indexed with three integers. The so-

called satellite reflections require four or more integer indices,

and contain information about the modulation. Thus, the main

reflections can be considered as Fav in the formalism above,

and the satellite reflections correspond to Fdif. In the absence

of the main reflections the information about the true struc-

ture can still be obtained by reconstructing the difference

between the true higher-dimensional density and the average

structure. The main reflections can be unavailable for at least

two reasons. First, the modulated structures often exhibit

twinning such that the main reflections of the twin domains

overlap, but the satellites are separated. Second, the main

reflections are usually much stronger than the satellites. If an

experiment is optimized to collect the intensities of the

satellites, most of the main reflections will probably be satu-

rated. While it is certainly desirable in such a case to perform

an additional experiment to collect the intensities of the main

reflections, it can happen that such an experiment is not

available, and then the present approach can provide at least

some insight into the structure of the crystal from the partial

data set.

2.2. Charge-flipping algorithm for densities without positivity
constraint

Charge flipping (CF) is a dual-space iterative phasing

method. It was published in 2004 (Oszlányi & Süto��, 2004), and

further analysed and improved in a series of subsequent

papers (Oszlányi & Süto��, 2005, 2007, 2008). It is based on a

standard Fourier cycle, i.e. on alternating between the direct

and reciprocal space, and applying modification to the trial

scattering density in the former, and to the structure factors in

the latter space. In this general principle it is not different from

other methods alternating between the two spaces. What

makes charge flipping specific is the type of the modifications.

In reciprocal space the basic modification consists of a simple

replacement of the structure-factor amplitudes by the

experimental ones, and in direct space the density is modified

by multiplying all density values below a certain small positive

threshold � by �1. The iteration is continued until conver-

gence is detected, or until a prescribed number of cycles is

reached. Charge flipping has been used in many applications

since its publication. An application particularly relevant to

this study is the solution of a pseudosymmetric structure by

charge flipping (Oszlányi et al., 2006), where it was demon-

strated that the standard charge-flipping algorithm is already a
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good tool for solving structures with translational pseudo-

symmetry.

Because all negative density values are made positive by the

charge-flipping modification, the basic algorithm is applicable

only to positive densities. However, Oszlányi & Süto�� (2007)

have shown that by a simple variation of the density modifi-

cation the method can be generalized to densities with both

positive and negative values. The density modification in this

so-called ‘band-flipping’ variant is multiplication by �1 of all

density values between �� and þ�. Thus, large negative peaks

remain preserved, and negative densities can develop.

Oszlányi and Sütö show that the sparseness of the density is a

sufficient condition for the algorithm to work, and that posi-

tivity is not strictly required, although it facilitates the solution

in cases when it is applicable, as it is a stronger constraint than

the sparseness alone.

The motivation for the development of the band-flipping

variant of charge flipping was its ability to reconstruct directly

the neutron scattering densities in the presence of atoms with

negative scattering power. However, charge flipping neither

requires normalization of input structure-factor amplitudes,

nor does it use the atomic form factors in any manner, and

therefore can be applied to the reconstruction of any density

distribution under the condition that the distribution is sparse.

The band-flipping algorithm can thus be directly applied to

reconstruction of difference electron densities from subsets

of structure-factor amplitudes, as derived in the previous

section.

One of several outstanding properties of the charge-flipping

algorithm is the fact that it does not require the a priori

knowledge of symmetry for the phasing process. As a result

the density is retrieved in space group P1, and it is possible to

derive the symmetry from the reconstructed density (Palatinus

& van der Lee, 2008). If the structure is a superstructure, then

it is frequently pseudosymmetric, and the symmetry determi-

nation directly from diffraction data can be difficult. If,

however, only the difference density is reconstructed ab initio,

the part with the higher symmetry is not present, and the

difference density can be analysed for symmetry more easily.

It is an established fact that charge flipping alone provides

only a relatively inaccurate approximation of the true electron

density, and that further iteration steps with different density

modification are needed to improve the phases (Oszlányi &

Süto��, 2008; Palatinus & Chapuis, 2007; Fleischer et al., 2010).

Fleischer et al. (2010) demonstrated quantitatively that the

low-density elimination (LDE) method (Shiono & Woolfson,

1992) is a suitable iteration method to improve substantially

the solution obtained by charge flipping. The only difference

between the basic CF algorithm and LDE is the density

modification step. For LDE the modification consists of a

simple resetting of all negative density values to zero. This

approach cannot be used for densities with negative values.

Instead, a ‘band density elimination’ approach must be used,

where all density values between ��LDE and þ�LDE are set to

zero. Although �LDE can be, in general, different from �CF, and

Oszlányi & Süto�� (2008) propose, in a related context, to make

it slightly larger than �CF, our experience shows that the

precise value of �LDE is not critical for the quality of the result,

and using �CF also for the LDE step is appropriate.

All calculations in the following sections were performed

with the program SUPERFLIP (Palatinus & Chapuis, 2007).

This program includes the possibility of applying the band-

flipping algorithm and the low-density elimination including

the band elimination variant. SUPERFLIP also contains an

option for deriving the symmetry of the structure from the
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Figure 1
(a) (001) projection of the difference electron-density (ED) map of
zeolite A (unit cell plotted in the range 0 � z � 0:5). The ED map of the
2� 2� 2 superstructure is superimposed with the average structure
framework. Selected symmetry elements ([001] rotation axes and mirror
planes parallel to [001]) of the average structure space group Pm3m are
drawn for one subcell to illustrate symmetry breaking in the super-
structure. The only preserved symmetry operation visible in this
projection is the twofold axis in the centre of the image, and two
antisymmetric diagonal mirror planes. (b) h110i projection of the
asymmetric unit. The T-atom distribution between Al and Si was
deduced from the position of the positive and negative peaks. Yellow
corresponds to positive and turquoise to negative ED values. The
threshold for the isosurface level is set to 20% of the ED maxima. This
as well as other images of density isosurfaces were produced by
the crystallographic three-dimensional visualization program VESTA
(Momma & Izumi, 2008).



reconstructed density. It is capable of reconstructing densities

in arbitrary dimensions, which makes it also suitable for

dealing with modulated structures and quasicrystals.

3. Applications

3.1. Zeolite A

The Na-substituted zeolite A is one of the most studied

zeolites. Its framework structure is of the LTA type [see

Baerlocher & McCusker (2010) for an overview of zeolite

framework types] and its idealized composition is NaAlSiO4.

The framework structure of zeolite A can be described to a

good approximation in a cubic unit cell with a = 12.6 Å with

symmetry Pm3m (Fig. 1a). However, ordering of the Si and Al

atoms leads to doubling of the unit-cell dimensions in all three

directions. The correct space group of the superstructure was

the subject of a heated debate in the 1980s. While most

investigators advocated the structure model with space group

Fm3c with alternating SiO4 and AlO4 tetrahedra, denoted

Si(4Al) (Smith & Pluth, 1981; Adams & Haselden, 1982;

Gramlich-Meier & Gramlich, 1982, and references therein),

several works appeared that advocated an alternative model

denoted Si(3Al), where each Si tetrahedron is surrounded by

three Al tetrahedra and one Si tetrahedron (Bursil et al., 1981;

Lippmaa et al., 1981). The deviation of the structure from the

small cell is quite small, because it is caused only by chemical

ordering of Si and Al, and by the accompanying small shifts of

the oxygen atoms due to the difference in the Si—O and Al—

O bond lengths. To test the method described in this work, we

decided to try to use it for reconstruction of the superstructure

of Na-A zeolite. We used a single-crystal sample of zeolite A

that serves as a test and calibration sample at the Swiss–

Norwegian beamline at ESRF, Grenoble. The sample was

prepared by the conventional synthetic method (Charnel,

1971). The data were collected with synchrotron radiation,

wavelength � = 0.7245 Å, T = 100 K to the resolution of dmin =

0.78 Å. All reflections could be indexed with a cubic cell with a

= 24.567 (1) Å.

According to the formalism outlined in x2 the reflections

can be separated into two sets. Fav represents reflections

corresponding to the small cell with a ’ 12.3 Å, i.e. with all

indices even. The remaining reflections can be treated as Fdif.

These weak reflections were included in the data set used for

calculation of the difference electron density using the band-

flipping algorithm. Out of 5037 independent superstructure

reflections in the data set 1415 were classified as observed

(I> 3�) with Rint ¼ 12:0%.1

The first notable difference from the expectation is that the

data set contained a large number of reflections violating the

F-centring. Out of 4358 reflections in the merged data set that

are forbidden by the F-centring, 993 had significant intensity

(I> 3�), and 303 had I> 20�. Thus, it is clear that the space

group of the investigated sample cannot be the expected

Fm3c. Analysis of systematic absences suggested Laue group

m3m, space group Pn3n.

The iteration using the band-flipping algorithm converged

to a stable solution in all of 100 test runs, with 489 cycles per

convergence on average. In order to address the problem of

the symmetry we used the recently published symmetry-

determination algorithm (Palatinus & van der Lee, 2008). This

algorithm does not rely on the analysis of systematic absences,

but analyses the electron density (the difference electron

density in the current case) for the presence of symmetry

operations compatible with the lattice parameters. Each

symmetry operation is assigned a so-called symmetry agree-

ment factor �sym. The space group can be derived from the list

of symmetry operations with sufficiently low �sym. The algo-

rithm yielded unambiguously and reproducibly space group

Pn3. The �sym of symmetry operations belonging to Pn3 was

less than 10% indicating a very good match, while all other

symmetry operations (including the diagonal n-glide

suggested by the systematic absences) had �sym ’ 40% or

more, indicating quite a poor match.

The reconstructed difference electron density is shown in

Fig. 1. As mentioned above, the chemical ordering of Si and Al

is not easily seen in X-rays owing to the proximity of their

atomic numbers. However, the Al—O bonding distance is

0.14 Å longer than the Si—O bonding distance, and thus the

ordering can be indirectly inferred from the bond lengths. The

differences in bond lengths, and consequently the distortion of

the TO4 tetrahedra (T = Al, Si), can be derived from the

difference map. In Figs. 1(a) and 1(b) part of the reconstructed

difference density is shown with an overlaid framework

structure of zeolite A. Shifts of the atomic positions relative to

the average structure are clearly demonstrated by the occur-

rence of pairs of positive and negative peaks. The distortion is

realized by shifts of the T atoms and mostly three of the four

oxygen atoms. One oxygen in each tetrahedron shows only a

very small shift from its average position. If we focus only on

the positive (yellow) peaks in the figure, we can see the AlO4

tetrahedra in the difference map as more ‘expanded’ tetra-

hedra, while the SiO4 tetrahedra are clearly ‘shrunken’. The

alternating pattern of the Si and Al tetrahedra breaks the

Pm3m symmetry of the average structure, but is compatible

with the Fm3c symmetry. However, the real positions of the

maxima and minima in the difference map break even the

Fm3c symmetry beyond any doubt. Two slightly differently

distorted frameworks can be found in the subcells of the

superstructure. Their alternated linking along h100i forms the

2 � 2 � 2 superstructure ordering.

An attempt to solve the structure by standard charge flip-

ping using the full data set does not lead to a reliable deter-

mination of the superstructure. The iteration converges with

surprising difficulty. Only 49 out of 100 runs converged within

15 000 cycles. The difficulty was caused by the large number of

missing strong reflections in the data set, as the 32 strongest

reflections were missing because of saturation of the detector.

However, even the converged runs did not provide any useful

information about the superstructure. The symmetry analysis
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yielded low symmetry-agreement factors for all symmetry

operations of the Pm3m symmetry. For example, the fourfold

axis 4x, which is not present in the superstructure, had on

average �sym ’ 10%, while the diagonal threefold axis yielded

�sym ’ 13%. The proximity of �sym of false and true symmetry

operations means that the phases of the superstructure

reflections are essentially random, and do not allow the

determination of the superstructure from the complete data

set.

It is not the purpose of this work to reopen the discussion

about the true symmetry of the Na-A zeolite. We believe that

it has become clear in the meantime that the exact symmetry

depends critically on the preparation conditions and sample

history. We know neither the exact sample preparation

procedure, nor the exact Si:Al ratio of the sample. Moreover,

the fact that the sample was measured at 100 K can have an

influence on the symmetry. It is clear, however, that the

presented method is a powerful tool that can be used to

address such complicated problems of symmetry, and yield

more convincing results than conventional approaches.

3.2. Chromium triacetylacetonate

The structure of chromium triacetylacetonate Cr(C5H7O2)3

[CrIII(acac)3] (von Chrzanowski et al., 2007) is formed by Cr

atoms octahedrally coordinated by six O atoms belonging to

three acetylacetonate molecules. The low-temperature struc-

ture is a sixfold superstructure of the room-temperature

structure. Both structures have the space group P21=c, and

their unit cells are related by the matrix S ¼ ð2 0 0j0 1 0j0 0 3Þ.

von Chrzanowski et al. (2007) point out that the transforma-

tion of the room-temperature structure to the low-

temperature superstructure can lead to different structures,

which differ by the choice of the position of the inversion

centre (Fig. 2a). Four symmetry-independent choices of the

inversion centre are possible. They are equivalent to four

possible origin shifts of the supercell. If a wrong choice is

made, the inversion centre is placed at a pseudosymmetric

position. The least-squares refinement procedure will not

converge from the wrong setting to the correct one. The wrong

structure can be refined to reasonable R values, with just a few

suspicious anisotropic displacement parameters which could

be, with a lack of critical crystallographic thinking, attributed

to disorder. It is notable that several of the commonly used

structure solution programs suggest the wrong choice of the

origin when the structure of chromium triacetylacetonate is

solved ab initio (von Chrzanowski et al., 2007).

The data were collected on a laboratory X-ray Nonius

KappaCCD diffractometer with Mo K� radiation. The

average intensity of the superstructure reflections (all reflec-

tions for which h 6¼ 2n or l 6¼ 3n) is only 3.2% of the average

intensity of the main reflections. It is thus not surprising that it

is not easy to distinguish the correct from the wrong choice of

the inversion centre in the complete structure (Fig. 2a), and

that the phasing procedure may fail in finding the correct

phases of the superstructure reflections. One hundred runs of

SUPERFLIP with standard settings and with all reflections

included in the data set were performed and analysed. All runs

converged with a mean of 157 cycles per convergence. Out of

these 100 runs the correct origin was located in 90 cases. In the

other ten cases the origin was placed incorrectly in the point
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Figure 2
(a) One unit cell of the low-temperature structure of CrIII(acac)3 with
highlighted positions of the symmetry operations of the room-
temperature structure. Black symbols represent the true symmetry
operations of the low-temperature structure, while the grey symbols are
pseudosymmetry elements. Dashed lines and letters ‘b’ and ‘c’ show the
slabs of the structure shown in (b) and (c). (b), (c) View of two slabs of the
structure along [001] with superimposed difference density shown as
isosurfaces. The true (black circle) and false (grey circle) inversion
centres are easily recognized. Positive density is shown in yellow, negative
in turquoise.



(1
4, 0, 1

6) of the correct structure. The degree of pseudosym-

metry for various origins can be well described by their overall

symmetry agreement factors �sym. This factor is an overall

measure of the match of all symmetry operations for the

particular choice of origin (Palatinus & van der Lee, 2008).

Table 1 summarizes the agreement factors obtained for the

four possible symmetry-independent choices of origin. It

reveals that especially the point (1
4, 0, 1

6) shows a particularly

high pseudosymmetry. Its �sym is significantly larger on

average than the �sym of the correct origin, but the intervals of

observed �sym overlap for these two choices of origin. It can be

concluded that the standard charge flipping solves the struc-

ture correctly in most cases, but fails occasionally, as the

distinction between the correct and incorrect origin on the

basis of �sym is difficult.

The difference density can be solved easily using band

flipping followed by five cycles of band elimination. An

inspection of the reconstructed difference density leaves no

doubt about the correct placement of the inversion centre

(Figs. 2b, 2c). The main shifts of the molecules can be directly

seen in the difference density as close-lying pairs of positive

and negative peaks. Out of 100 runs 92 converged successfully

with, on average, 526 cycles per run. The remaining eight

converged to partial solutions of insufficient quality. The

symmetry agreement factors obtained in the 92 successful runs

are listed in Table 1. The �sym of the correct solution is clearly

the lowest, and there is no overlap between the interval of �sym

for the correct and incorrect origin choices. The band-flipping

calculation using only the superstructure reflections revealed

the correct origin in all 92 converged runs. Note that �sym of

100 corresponds to a random density. The values of �sym

exceeding 100 thus indicate a certain degree of antisymmetry.

3.3. Dieuropium disilicate

Crystals of dieuropium disilicate were obtained in a small

quantity as a by-product of a reaction of Eu2O3 with Sb4O5Cl2

in evacuated quartz ampoules at 1123 K. A small single crystal

was measured on a Stoe IPDS 1 single-crystal diffractometer

with Mo K� radiation. All reflections could be indexed with

a C-centred monoclinic unit cell with cell dimensions

a ¼ 22:845, b ¼ 14:358, c ¼ 6:680 Å and 	 = 91.32�. However,

the structure could not be solved from the diffraction data. An

inspection of the distribution of the intensities in the hk0 plane

(Fig. 3) revealed immediately that the crystal is a twin by

reticular pseudomerohedry that can be described by a triclinic

unit cell with dimensions a ¼ 13:491, b ¼ 6:746, c ¼ 6:680 Å,

� = 88.89, 	 = 91.11 and 
 = 115.70�. The twinning matrix T

that transforms the reflection indices of the second twin

domain to the reciprocal basis of the first twin domain (i.e.

h1 ¼ h2TÞ is

T ¼
0 � 1

2 0

�2 0 0

0 0 1

0
@

1
A: ð9Þ

It follows from the twinning matrix that all reflections with the

index h even will transform to integer indices and will thus

overlap with a reflection of the second twin domain, while all

reflections with the index h odd will remain separated. Using

the separated reflections as Fdif, i.e. setting the superstructure

matrix S – see x2 – to ð2 0 0j0 1 0j0 0 1Þ, allows us to solve the

difference density between the true density and a super-

position density obtained by overlapping two halves of the

unit cell along a.2

The difference map could be solved with the band-flipping

method. The iteration always quickly converged to a solution,

Acta Cryst. (2011). A67, 9–20 Lukáš Palatinus et al. � Difference densities from charge flipping 15

research papers

Figure 3
Intensity distribution in the hk0 plane of the diffraction pattern of
Eu2Si2O7. Solid circles represent observed reflections, empty circles show
reflections with insignificant intensity. The basic vectors of the incorrect
monoclinic reciprocal base (subscript ‘m’) and one of the two orientations
of the correct triclinic base (subscript ‘t’) are outlined with grey and black
arrows, respectively.

Table 1
Symmetry agreement factors �sym for the four possible origin choices of
low-temperature chromium triacetylacetonate.

The statistics were obtained from 92 converged runs.

Origin shift Mean Minimum Maximum

Standard charge flipping on all reflections
0 0 0 2.96 1.24 7.24
0 0 1

6 12.94 7.28 20.12
1
4 0 0 21.44 9.54 23.69
1
4 0 1

6 6.60 2.70 10.77
Band flipping on superstructure reflections
0 0 0 12.17 9.96 15.87
0 0 1

6 90.07 52.41 124.75
1
4 0 0 146.07 133.78 161.66
1
4 0 1

6 39.40 22.82 61.84

2 The reflection list indexed in the triclinic cell and containing all reflections
that can be indexed in one twin domain has been deposited as supplementary
material and is available from the IUCr electronic archives (Reference:
SH5114). Services for accessing these data are described at the back of the
journal.



with an average of 214 cycles per convergence. A typical

difference map is shown in Fig. 4(a) together with an overlaid

structure. The interpretation of the density is quite straight-

forward. In contrast to the superstructures, where the atoms of

the individual subcells lie usually quite close, in the current

case the two subcells (two halves of the unit cell along a) do

not show any significant overlap, and therefore the positive

peaks in the difference density can be directly interpreted as

positions of atoms.

We note that the structure of Eu2Si2O7 can also be solved

without resorting to the reconstruction of difference electron

density. The simplest approach is to use all reflections that can

be indexed by one of the twin domains, and to ignore the fact

that part of the reflections contain a contribution from the

other domain. The resulting electron density is shown in Fig.

4(b). It provides sufficient information for building an initial

structure model, but the density is much more noisy and

contains a lot of artifacts. Even when ignoring the Fourier

artifacts lying close to Eu atoms, the density map contains four

spurious peaks with density higher than the density at the

position of O atoms. On the other hand, the difference density

in Fig. 4(a) is clear and contains no spurious peaks. The

increase of the quality of the reconstructions is significant, but

not critical for the structure solution in this case. However, the

improvement can be crucial in cases of more complex struc-

tures.

3.4. Modulated structure

Twinning is a frequent phenomenon occurring in modulated

structures resulting from phase transitions. In many cases the

twinning law brings main reflections onto other main reflec-

tions, but the satellites of each twin domain remain separated.

In other cases a coexistence of a non-modulated and modu-

lated phase is possible (Krueger et al., 2009). If the modulation

is strong, the inability to obtain accurately the intensity of the

main reflections can hinder the structure solution. And even if

all intensities are available and twinning is not a problem, it

can sometimes be difficult to see clearly the modulation if all

reflections are used as an input for charge flipping. Charge

flipping does not make use of the concept of point-like atoms,

and it can thus be used for ab initio reconstructions of

modulated structures directly in superspace (Palatinus, 2004),

and the same concept can be used for reconstruction of the

difference between the modulated and average density using

the band-flipping approach. For the illustration of the appli-

cation we show here the solution of the modulation of chro-

mium diphosphate. This structure does not exhibit twinning,

nor have there been any problems with the collection of the

complete diffraction pattern. We choose this structure just as

an example, because most cases where the application of this

method would be of real interest contain additional compli-

cations that make it unsuitable for a brief presentation within

the scope of this paper.

Chromium diphosphate Cr2P2O7 has an incommensurately

modulated structure at room temperature (Palatinus et al.,

2006), superspace group C2=mð�0
Þ0s. The data were

measured on a laboratory Oxford Diffraction CCD diffract-

ometer using Mo K� radiation, and the structure was easily

solved by the standard charge-flipping algorithm, and then

refined using the computing system JANA2006 (Petřı́ček et al.,

2006). The atom positions are modulated with a variety of

modulation functions, including crenel functions and saw-

tooth functions, i.e. linear functions with slope and point of
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Figure 4
Structure of Eu2Si2O7 projected along c with superimposed electron
densities reconstructed by charge flipping. The structure is plotted as
separate Eu atoms and SiO4 tetrahedra connected by bond sticks. Only
one half of the unit cell along c is shown for clarity. (a) Difference
electron density reconstructed by band flipping from a data set with only
odd h indices. (b) Total electron density reconstructed by the standard
charge flipping on a full data set. Positive density is shown in yellow,
negative in turquoise. Only positive density shown in (b). All density
peaks in (b) without an associated atom are ghost peaks. The isosurfaces
are drawn at 75% of the density of the smallest atomic peak. Note: the
densities were treated with an algorithm for removing Fourier artifacts.
This algorithm is implemented in the program SUPERFLIP as an
experimental feature. It was inspired by the resolution bias correction
algorithm (Altomare et al., 2008). Without this treatment the features in
the image would be obscured by the Fourier artifacts around the Eu
atoms. The application or not of the treatment has no impact on the
conclusions that can be drawn from the maps.



discontinuity. If the main reflections are removed from the

reflection list, the difference density between the true and the

average structure can be reconstructed by the band-flipping

algorithm. The convergence was rapid and reproducible in

this case. Two two-dimensional sections through the four-

dimensional electron density are shown in Fig. 5. The sections

show positions of the chromium atom, and one of three

independent oxygen atoms. Both total electron density (as

calculated from the final structure model) and the ab initio

reconstructed difference density are shown for comparison. It

is obvious that the main features of the modulation can be

clearly seen in the difference density. It is notable that the

difference density at the position of the oxygen atom shows

clearly the discontinuous nature of the modulation (Fig. 5d).

This can be deduced from the abrupt switching of the positive

difference density from left to right and back along x4. Such a

distinction between the harmonic and discontinuous modula-

tion cannot be made from the total density (Fig. 5c).

3.5. Quasicrystal superstructure

Structure solution methods like CF and LDE or their

variants require periodic boundary conditions of the under-

lying structure, which are fulfilled for QCs in their higher-

dimensional (ND) description. Diffraction patterns of QCs

can be indexed with integer numbers based on a set of 3 + d

independent basis vectors, where N = 3 + d is the dimen-

sionality of the periodic boundary condition. The atomic

structure in the ND description consists of so-called occupa-

tion domains (ODs), which are geometric objects, only

extended along the perpendicular-space dimensions V?. The

three-dimensional physical space Vk and the dD perpendi-

cular space V? are two orthogonal subspaces of the Euclidean

embedding space V ¼ Vk � V?. The reconstruction of the

ODs in position, size, shape and occupation is the subject of

the structure solution and refinement process of QCs.

It has been shown that the structure solution methods CF

and LDE are successful in solving QCs (Takakura et al., 2001;

Katrych et al., 2007). However, no structure solution for

quasiperiodic superstructures is reported and iterative phase-

retrieval algorithms or other structure solution methods can

provide solutions for their average structure only. We show

that the band-flipping variant of the CF algorithm is able to

reconstruct the difference density from simulated diffraction

data of a decagonal quasiperiodic superstructure. Decagonal

QCs are structures with a periodic stacking of quasiperiodic

layers with five- or tenfold rotational symmetry. Several

superstructures have been found in decagonal quasiperiodic

phases (for a comprehensive review see Steurer, 2004). They

can be divided into superstructures along the periodic direc-

tion, within the quasiperiodic layers or as combinations of

both. Yamamoto & Weber (1997) and Yamamoto et al. (2005)

developed five-dimensional models for the quasiperiodic

superstructures AlFeNi and AlCoNi (S1 phase) by introdu-

cing colour symmetry to explain the superstructure reflections

in the diffraction pattern. According to these models, sub-

domains of the disc-like-shaped ODs are related by anti-

symmetry operators, which transform one property to its

inverse.

We modelled a fivefold decagonal superstructure based on

colour symmetry. The superstructure has a lattice parameter a

= 5.19 Å, which is 2 cosð�=10Þ times larger than the average

structure with a lattice parameter of a0 = 2.73 Å. The lattice

parameter along the periodic direction for both structures is

c ¼ c0 = 4.09 Å. We defined the basis vectors in the direct

five-dimensional space by dj ¼ ð2a=51=2Þ½ðcj � 1Þe1 þ sje2

þ ðc2j � 1Þe3 þ s2je4	 with j ¼ 1; . . . ; 4 and d5 ¼ ce5, where

cj ¼ cosð2�j=5Þ and sj ¼ sinð2�j=5Þ. The vectors e1, e2 and
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Figure 5
Sections through the superspace electron density of Cr2P2O7. (a) x1–x4

section through the position of atom Cr showing the total density
calculated from the final structure model. (b) The same section as in (a)
through the ab initio determined difference density. (c) x2–x4 section
through the position of atom O1 showing the total density calculated
from the final structure model. (d) The same section as in (c) through the
ab initio determined difference density. The thick lines in the sections
show the refined modulation function. The contour interval in (d) is ten
times smaller than in (b).



e5 are parallel-space unit vectors, and e3 and e4 are

perpendicular-space unit vectors. The basis in reciprocal space

is therefore defined by d�j ¼ða
�=51=2Þðcje1 þ sje2 þ c2je3

þ s2je4Þ and d�5 ¼ c�e5 with a� ¼ 1=a and c� ¼ 1=c. The model

structure consists of two symmetry-independent pentagonally

shaped ODs, where the OD A has a diameter of

2�a=½5ð1þ �2Þ	
1=2 [� is the golden mean; � ¼ 2 cosð�=5Þ

’ 1:61803 . . .] and is located at (0, 2, �1, 1, 1.25)/5. The

�-times larger OD B is located at (0, 4, �2, 2, 1.25)/5 and

fully occupied with Al. OD A is divided into several

subdomains with different site-occupancy factors. An inner

star is fully occupied with Co and the outer subdomains

with Al. The Al-occupied subdomains in OD A were

modelled with a site occupancy of 0.5 in the average structure,

while in the superstructure two of these subdomains

are related by a colour mirror plane. Therefore, the

site-occupancy factor of one subdomain is increased by

0.5 and that of the colour-symmetry-related domain is

reduced by the same value, or, in other words, one

subdomain is fully occupied with Al and the other unoccupied

(Fig. 6).

The colour space group of the superstructure is P105=mc0m0,

where the ‘0’ denotes the antisymmetry operators. The average

structure is described in the space group P105=mmc.

We calculated the diffraction data of the modelled phase by

Fourier transform of the five-dimensional structure, applying

an overall Debye–Waller factor in parallel space of 0.019 Å2.

The phasonic Debye–Waller factor, which describes random

fluctuations along the perpendicular-space coordinates, was

set to 0.020 Å2. The calculated intensities were scaled so that

the intensity of the strongest reflection except Fð0Þ is 10 000

counts. Normally distributed random numbers with a variance

�2 ¼ IcalcðhÞ were added to simulate noise in the counting

statistic.

The lattice vectors in the reciprocal space defining the

average structure and the superstructure are related by the

transformation matrix S = (1 0 1 �11 0j0 1 1 0 0j�11 0 2 0 0j0 �11 1 1 0

j0 0 0 0 1). The determinant of the transformation matrix is 5

and, therefore, the superstructure is a fivefold superstructure

of the basic structure. The superstructure reflections amount

to approximately 75% of all reflections but contain only 2% of

the integrated intensity of the data set. Even the strongest

superstructure reflection has a signal-to-

noise ratio of 7=71=2 < 3.

The superstructure was solved using

the band-flipping variant of the CF

algorithm applied to the diffraction

data containing only superstructure

reflections. To reduce noise in the

resulting electron-density (ED) map,

five subsequent band-elimination cycles

were performed. We handled the

diffraction data in the Laue group 1

and no symmetry averaging was

performed. Fig. 7 shows the calculated

difference map of the OD A located at

(0, 2, �1, 1, 1.25)/5. The subdomains

corresponding to the superstructure

were reconstructed. The absolute

density values of both subdomains are

similar and the colour symmetry, anti-

symmetric mirror planes in this case, is

properly recovered.

Since we were using simulated

diffraction data, a comparison between

the reconstructed and the true

phases is possible. Therefore, the

reconstructed ED was shifted to the

same origin as the reference ED. The

phase difference �’ ¼ ’true � ’retrieved

was used as a figure of merit of

the structure solution (Fig. 7c). The

distribution is typical for successful CF

and LDE solutions (Fleischer et al.,

2010). Strong reflections were retrieved

with small phase errors and weak

reflections with an almost random

phase.
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Figure 6
Model of the superstructure in a decagonal QC. Modelled symmetry independent OD A of (a) the
average structure, (b) the difference structure, (c) the superstructure located at (0, 2, �1, 1, 1.25)/5
and (d) OD B located at (0, 4,�2, 2, 1.25)/5. The subdomains coloured in black and white represent
the parts of the OD which are related by the colour symmetry operator ‘m’. Dark grey indicates the
occupation of subdomains by cobalt and light grey indicates different occupation by aluminium,
which is unaffected by the colour symmetry.

Figure 7
Reconstructed difference map of the OD A at (0, 2, �1, 1, 1.25)/5 from (a) the correct phases and
(b) a single band-flipping run with 20 subsequent band-elimination cycles (white corresponds to
negative densities and black to positive densities; densities about zero are grey). (c) The quality of
the reconstructed difference map is represented in the phase difference between the correct and the
retrieved phases of superstructure reflections.



4. Discussion

The previous section demonstrates, using several examples,

the applicability of the method to various crystallographic

problems. The ability to reconstruct structure information

from only a partial set of reflections is clearly a powerful

alternative tool for some problems. The purpose of this work is

to describe the method and to demonstrate its usefulness, but

not to provide a systematic account of its properties and

limitations. This will require gathering more experience with a

wider variety of test cases. However, already the limited list of

examples presented in this paper allows for some general-

izations.

The only critical parameter of the charge-flipping iteration

is the flipping parameter �. The selection of its optimum value

has been discussed several times for the standard charge-

flipping algorithm (Oszlányi & Süto��, 2004, 2008; Pereboom,

2007; Dumas & van der Lee, 2008), but never for the band-

flipping algorithm except for the qualitative note in Oszlányi

& Süto�� (2007) that the useful interval for � is narrower for

band flipping than for standard charge flipping under other-

wise similar conditions. We can confirm this observation. The

standard charge-flipping algorithm is relatively tolerant to

changes in � up to 20% or even more, with typical values of �
for small molecules around 1:1� (Pereboom, 2007; Oszlányi &

Süto��, 2008; � is the standard deviation of the density values).

On the other hand, for the band-flipping algorithm we

observed an increased sensitivity to �. As an example, for the

quasicrystal superstructure the optimum � was found to be

1:4�, and the values outside the interval 1.35–1.60� already

yielded no solution. The increased value of � compared to

standard charge flipping with positive densities could be

explained by the increased sensitivity of the iteration to traps.

The possible traps occurring in densities without positivity

constraints were discussed by Oszlányi & Süto�� (2007).

Increased � results in an increased perturbation of the density,

and thus in an increased ability to escape the traps in the

iteration path. However, this hypothesis is just a qualitative

explanation and cannot be used for predictions. We cannot but

conclude that despite the increasing popularity of charge

flipping and a growing body of work on the method the

behaviour of its fundamental parameter is still relatively

poorly understood.

Once the difference density is reconstructed, it has to be

interpreted to obtain the desired structural information. A

qualitative interpretation of the difference densities is usually

possible, and has been demonstrated in the examples above,

but a quantitative interpretation is often difficult or impos-

sible. Probably the most serious difficulty is that if a pair of a

positive and negative peak is formed owing to the displace-

ment of an atom from its average position, then the amplitude

of this displacement cannot be accurately inferred from the

position of the difference peaks. It was nicely demonstrated by

Rius et al. (1996) that for small-to-moderate displacements (up

to ’ 50% of the half-width of the atomic peak) the position of

the difference peaks is essentially independent of the displa-

cement, and it is only the height of the peak that changes.

However, the peak height alone cannot be used for quanti-

tative analysis either, unless the average density is known on

the same absolute scale. In reality the best way to obtain

quantitative information about atomic positions is to add the

difference and average densities, and analyse the sum for the

peak positions. If the average density is available on the same

scale as the difference density, then this approach can be

beneficial, but if the average density is not available, then

there is no easy way to quantify the atomic shifts other than by

performing the full structure refinement. A similar problem

concerns the occupational ordering. As an example, an

increased occupancy of one position in the supercell results in

a positive peak in the difference density, but the height of the

peak has no relationship to the absolute change of occupancy,

unless the intensities are known on an absolute scale. This is,

however, usually not the case. Despite the limited possibility

of extracting quantitative information from difference

densities, if the average structure is not available, the differ-

ence density can still provide a lot of qualitative or semi-

quantitative information about the crystal structure. Particu-

larly useful is the decreased sensitivity of the difference

structure to effects of pseudosymmetry, and consequently the

possibility of unambiguously determining the true space group

of the superstructure.

5. Conclusions

The method of ab initio reconstruction of difference electron

densities from diffracted intensities of the superstructure

reflections has been demonstrated to be a general and efficient

approach to deal with several types of superstructures. The

main advantages of this approach are that it allows one to

overcome pseudosymmetry effects, it allows for a more reli-

able determination of the true symmetry of the super-

structures, and it provides structure information in cases when

a subset of reflection intensities is not available, for example

because of the overlap of multiple twin domains. The method

has also been shown to be applicable to solution of structures

twinned by reticular pseudomerohedry, to modulations in

incommensurately modulated structures from only the satel-

lite reflections, and for elucidating superstructures in quasi-

crystals.
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